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Let us assume that a controlled system is subjected to random impulses 
and that it has a corrective arrangement guaranteeing the carrying 
through of the process according to the given program, conditioned bs 
the uninterrupted receipt of complete information about the random im- 
pulses at each given instant. If the information about the random im- 
pulse is transmitted with a distortion arising from the appearance of 

random errors, errors of measurement, the appearance of lags, inertia, 
etc., then the actual process will be different from the desired process. 
Below are given estimations of the distortions which bring about the de- 
viation of the process from the given one, within the permissible limits. 
There is considered the case in which the actual motion is periodic and 
the case in which the actual motion is discontinuous. 

The results can be treated as the conditions of stability of the 
motions, that is, as the conditions of preservation and stability of 
periodic motions in the presence of constantly acting random impulses. 

In order to give uniformity to the results, the actual process is 
treated as if it were random. This article is the immediate continuation 
of previous work [l I in which the determinantal case is considered. 

1. Consider the system of differential equations 

where x is an n-dimensional vector; q(t), c(t) are random scalar func- 
tions; f(x, t, q(t)), u(t, 4‘(t)) are n-dimensional vector functions. 

‘Ihere arises the problem of the choice of the functions t(t), zz(t,c(t)) 
so that the u priori given (and perhaps randomi function x = g(t) would 
be a solution of the system of equations (1.1). Obviously the simplest 
solution to this problem would yield the relations 
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E CL) = rl (07 ZJ (t, 5 (0) = g’ (t) - f (g (09 t? rl (4) (1.2) 

However, upon construction of the equation u(t, c(t)) it is possible 
to obtain incomplete information about the significance of the function 
q(t) and moreover this information may be received with a certain lag. 
It may occur that the function u(t, t(t)) can be chosen only from a de- 
termined class of functions (for example, trigonometric polynomials), and 
consequently the second equation in (1.2) can only be fulfilled approxi- 
mately. Consider 

r (6 7 (t), 5 (0) = fJ (4 E (t)) - g’ (t) - .i (g (t), t, r) (t)) (1.3) 

where E(t) is a random function correlated with n(t). ‘Ihen values are to 
be found for the distortion r( t’, q(t), c(t)), upon the fulfilment of 
which the deviation of the actual random process n(t), described by 
system (1.1) from the given process g(t), does not exceed the given 
magnitude . 

‘Ihe structural scheme of the system, described by the equation, is 
presented in Fig. 1: here A is the object, the actual required process; 
random impulses q act upon A; these impulses are sent simultaneously 
through C into a correcting arrangement B, the purpose of which is the 
working out of the corresponding controlling impulse. 

Consider now certain general aspects related to the theory of differ- 
ential equations with random parameters. It may be shorn [ 2, p. 30 1 that 
a random quantity can be determined as a measurable function, fixed in a 
certain region of values a (or a region of elementary events). Here two 
random functions q(t) and t(t) enter into Equation (1.1). If t(t) is 
functionally connected with v(t), then both of these functions have the 
same region of values a If the function t(t) is connected with v(t) 
correlatively, that is, at a determined realization of q(t), the function 

t(t) will be a random function with a 
region of values & then evidently as a 
general region of values it is possible P 
to take the region being the product of 6 
regions a and A with a measure measure $ T 

chosen in the corresponding manner. 
c : A 

X 

In such a manner, it is possible to 
consider that all random magnitudes 

S Y 

entering Equation (1.1) will be random 
magnitudes connected with the general region of values a. 

If in a linear region of random magnitudes there Is determined by 
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Some means a norm (as in a region of measurable functions determined in 
a region of values @, then the differential equation (1.1) is trans- 
formed into a differential equation given in the linear normalized space 
Y the elements of which are random vectors. Further, as the initial 
vectors for the solution of Cauchy’s problem, it is necessary to take 
not onls the determinantal vectors but any other random vectors from Y. 
Evidently, in the presented treatment of Equation (1.1). the integral is 
derived from a random function conforming to a scalar argument t; it 
should be understood how the integral is derived in the sense of Bokhner 
[ 3, p.59 1. 1n particular, if in place of the square of the norm of the 
random vector one can take the mathematical probability of the square of 
the length of the vector, then the concept of the derivation and the in- 
tegral of the random function coincides nitb that generally understood 
r. 4, p. 214 I. 

It should be noted that the theory of differential equations in linear 
normalized regions is well developed at the present time. Relying upon 
this theory, it is possible without difficulty to formulate the conditions 
of existence, of uniqueness, and of continuity of solutions f 5 1 , to con- 
sider the questions of stability [ 6 1 , or the questions of the existence 
and determination of periodic solutions [7 I. 

Making use of the above-mentioned reasoning, it is possible, obviously, 
to utilize the results of the cited works for the study of differential 
equations with random parameters. 

2. Let g(t) be a piecewise differentiable random process. Carrying 
out in system (1.1) a change of variable t = x - g(t), there results 

Making use of (1.3) and introducing the designation 

z (2, t, ‘1 (9) = f (2 + g (t), 4 q (0) - i (g (t), t> ‘1 (t)) 

the system of equations of the perturbed motion takes on the form 

dz 
- = z (2, t, q (0) + I- (6 rl (t), F (4) 
dt 

(2.1) 

(2.2) 

The vector random function r(t) determines the error resulting from 
the presence of distortions connected with the transfer of information 
about q(t) into the correcting arrangement; the deviation of the random 
function from zero coincides with the deviation of the solution x(t) of 
system (1.1) from the given function g(t). As a measure of the deviation 
of the random magnitude z from zero, we take 
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is 
it 

is 

jlz )I = (M ( 2 j2)“z, / 2 ) = max 1 Zi! 1 (1 < i < n) 12.3) 

Here M is the operation of finding the mathematical probability, zi 
the projection of vector z. If A is a matrix with elements Ui~t then 
is assumed that 

Obviously, the inequality 

IAz 1 6 1 A 1 Izj (2.4) 

valid, whereby the equality can be attained. If matrix A and vector t 
are random, then the inequality (2.4) is justified for any separate 
realization, that is for the fixation of the element w of the chosen 
region a. 

We now separate from the function Z(Z, t, q(t)), according to some 

rule, the linear part A(t, q(t))z, and Equation (2.2) is then written in 
the form 

dz 
- = A (t, y (t)) z 
dt + R (z, t, rl (4) $_ r (G rl @I, F (9) (2.5) 

J3y D is designated the part of the region of random values from M, 
determined by the inequality 11 z 11 < (t . 

Ihe following limits on the equation are assumed: 

a) ‘l%e values M(A(t, q(t) II ‘, llR(z, t, a(t)) II, II r (t, q(t), 5(t)) II 
are finite for almost all t. 

b) ‘Ihe functions IA(t, q(t)) 1 and IR(z, t, q(t)) I for any fixed z may 
be integrated (as random functions) over any interval [k T, (k + 1) Tl , 
where k is a positive whole number and T< 0. 

cl ‘Ihe function R(z, t, q(t)) satisfies the Lipschitz condition 

IlR (z, t, q(t)) - R(y, t, q(t)) II ,< LjI z - y 11, (L = const, z c D, y CD). 

d) l’he function 11 r (t, q(t), t(t)) II is integrated (according to 

Lsbegue) over any interval [k T, (k + 1)Tl . 

e) ‘lhere exists the fundamental matrix R = W( t, r , 01 of the system 
x’ = A(t, ~(t))x, such that 

M, I W (t, z, 0) I * < Bze-++--s) (BZ1, a>01 
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Here irr, is the operation of finding the conditional mathematical pro- 
bability with t < r, q(t) = v,(t) where q,(t) is a certain realization 
of q(t). 

f) h=a--LB>0 

g) ‘Ihe random magnitudes 1 E’(t, 7, of 1 and \,fi’(z(r ), ;, q(r 1, just as 
the random ma~itudes 1 Rt, r , d 1 and 1 rfr I q(r 1, tf(r f 1 / , with the 
physical value T and the determined realization q(t) = pO( t) at t < r 
are statistically independent. 

The last condition means that the course of the process, described by 
system x’ = A(t, v(t))x, does not depend upon the distortions, occurring 
at a given instant of time. In other words, in the case of a linear 
object A, this means that if the closed circuit shown in Fig. 1 is opened 
at point Y, then the random magnitude u, on the output of C at the in- 
stant of time 7, and the random magnitude x on the output of A at the 
instant of time t < r will be statistically independent. Condition (e) 
is the condition of exponential stability on the average, introduced in 

I8 I. 

In agreement with 15 I, conditions (a) to (d) guarantee the existence 
and uniqueness of the solutions of Equation (2.5), if this equation is 
considered as an equation given in a linear region of random magnitudes 
z, with a norm determined in agreement with Equation (6). 

‘Ihe designation p(t) = 11 r ft, q(t), e(t)) \I is introduced and it is 
assumed that 

where k is an integer, and T is some positive number. 

Theorem 2.1. Let conditions (a) through (g) and but one of the follow- 
ing equations be fulfilled: 

If z(t) is a random solution of system (2.5) determined by the con- 
dition 11 z (0) 11 < e/2B, then at t > 0 the inequality [I z (t) I/ < c holds, 
and, further, there exists to such that 11 z (t) \I < c/2B for t > to. 
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The proof of the theorem follows. Obviously, the formula of Cauchy is 
justified in the given case, in agreement with which 

z (t) = w (t, 0) 20 + p- (t, z) (R(z, 7) + r (z)) d-c 

where z0 is the original random vector and for brevity of notation the 
random parameters q(t) and c(t) are omitted. Obviously there results 

Since 1 W(t, 0) ( and z0 are independent random quantities, then 

From this and the limitation of condition (g) it follows that 

;] W (t, r) r (r) ii2 s’ \ M Of, / r (r) 12M, / W (t, r) I”) < B2e-2a(*--+) 11:’ (r) 1) 

Analogously 

Finally 

(2.7) 

Further reasoning is completely analogous to the reasoning brought 
out in the proof of the first part of 'Theorem 2.1 of 11 1. 

Now it is assumed that the constructed random process g(t) has iso- 
lated points of discontinuity of the first kind. This means that at the 
points of discontinuity tk limits exist in the mean quadratic lim g(t) 
as t -, tk + 0 and lim g(t) as t -, tk - 0, but these limits do not co- 
incide on the set of the ?A of the nonzero measure. Evidently the control 
carrying out the given process x = g(t) must be of the form 

2.5 (*, 9 (*I) = g' (4 - f (B (*)t f, rl (*J) 

at points of existence of the derivative and 
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at points of discontinuity t = tk. Here, b, denotes the random vector, 
the components of which coincide for each value w < Q with the magnitude 
of the discontinuity, corresponding to the component of the vector func- 
tion g(t). 

Obviously the vector of distortion r(t) in this case must have an 
analogous form, that is 

r (t) = I’O (t) -#- 2 CkS (t - th-f (3.8) 
k 

Let T be a positive number and let the quantity I( r O(t) 11 = p,(t) be 
integrable over each interval [KT, (k + 1) .Tl (k = 0, 1, 2, . . .>. 

Let 

Here the second sum is extended onto those IR for which the points of 
discontinuity Cm lie in the interval [ k T, (k + 11 7’1 . 

Utilizing the reasoning brought forth in the proof of Theorem 2.1 of 
the present article and ‘Iheorem 3.1 of Cl 1, it is possible to prove 
that upon fulfilment of the inequality 

h, < $ eBkl (1 - eyiiT) 

the solution z(t) of system (2.51, determined by the condition [lzCO> (( < 
rf2B, does not exceed, for t > 0, the limits of the area 11 z 11 < 6. It 
is also possible to prove that such a to, for t > t,, will have 
If 2 (t) \j< r/ZB. - 

3. Now consider the case 
The random function &t) is 
such that 

in which the programmed process is periodic. 
called periodic if there exists a period T 

II 9, (t + T) - cp (0 

for any t. ‘Ihe random vector function is called periodic if its compo- 
nents are periodic random functions of one and the same period. The 
periodicity of a random matrix is determined analogously to the require- 
ment of the periodicity of its elements, It should be noted that the in- 
dicated definition of the periodicity of a random function is equivalent 
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to the requirement of the 
function. 

periodicity of almost all realizations of the 

1235 

It is proposed now that in Equation (1.1) the function f(x, t, q(t)) 
is a periodic random function t of period T. Further, let the approxi- 
mate random process g(t) also be a periodic vector function of the same 
period. In this case, it is reasonable to select the control u(t, t(t)) 
to be periodic, and this means that the distortion r(t, q(t), t(t)) is 
also periodic of period T. Therefore, in system (2.5) let the matrix 
A(t, v(t)) and the functions R(z, t, q(t)), r(t, q(t), (T(t)) be periodic 
of period T. 

Theorem 3.1. Let there be fulfilled conditions (a) through (g) and one 
of the conditions 

(A) 

(B) Pl = 

‘1‘ 

CC) p2 = ic P2 
i!l 

The following statements are then valid: 

7 

\ . 
p (1) dt < L&e-LT(l - e--hT) 

0 

(t) dt i”< &- ( ,,$_ , )‘\I - e--)J-) 

1) Any solution z(t) of the system of equations (2.5), determined by 
the condition I[ z (0) 11 < 6/2B f or t > 0, is limited to the region 

II z II < 6 * 

2) ‘Ihere exists in the region \I t 11 < C, for t > 0 a periodic solu- 
tion, asymptotically stable in the mean quadratic 18 I, z’(t), such that 
from 11 z (0) - ~~(0) 11 < c/2 B there follows lim 11 z (t) - z”(t) [I = 0 as 
t+m. 

‘Ihe proof of the first part of the theorem follows from ‘Iheorem 2.1; 
the second part is proved exactly as the second part of Theorem 2.1 of 
[ 1 I, if the remarks made in the proof of lheorem 2.1 are noted. 

Now suppose that the approximating process g(t) again has isolated 
points of discontinuity of the first kind. Let 

?I = \ 11 ?” tt) /I & + 2 11 ck I/ 
0” k 

where the random function r O (t) and the random vector cI have the same 
meaning as in (2.8); the sum in the second component is extended over 
those values of k for which the point of discontinuity lies in the in- 
terval [O, Tl. It is not difficult to prove that in this case the 
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fulfilment of the inequality 

pI .-,I, 2& e -AT (I _ e--).T ) 

involves in itself the proof of both statements of Theorem 3.1. 

'Ihe author extends his thanks to N.N. Krasovskii for the discussion 

of the subject and results of this article. 
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